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An improved regula Palsi scheme is introduced for the solution of the Schrodinger equation 
with stepped potentials. The scheme significantly reduces the number of iterations needed for 
eigenvalue evaluations. ( 1987 Academw Press. Inc 

I. INTRODUCTION 

The solution of the one-dimensional Schrodinger equation is of major impor- 
tance in quantum mechanics (see, e.g., [ 1 I). Many 3-D systems can be reduced to 
1-D ones by standard techniques such as the separation of variables. Moreover, 
quasi 1-D systems have recently attracted considerable attention [2]; Localization 
problems and tunnelling are treated mainly in 1-D disordered lattices [3]. Since the 
number of cases for which analytic solutions are available is rather small, a genera1 
numerical scheme could be very helpful. A simple approach is to replace the poten- 
tial V(X) of the Schrodinger equation by a piece-wise constant function (the 
procedure is an old one, being periodically rediscovered; see [4]) for which the 
solution is obtained by merging together the known solutions of each interval. In 
addition to being an approximation to the genera1 case, it can simply yield the main 
qualitative feature of any problem. In particular, for problems where the actual 
potential is unknown but for its general form, the use of a stepped potential [S] 
brings out their relevant properties and enables us to understand their physical 
nature. 

An important application of the piecewise constant potential is the 
mathematically identical optical problem [6] where it is called the “staircase” or 
“multilevel” method. 

The numerical procedure designed to get the eigenvalues of the piecewise con- 
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stant Schrodinger equation is treated here. Since it calls for the computation of the 
zeroes of a complicated function, a special attention was given to reduce computing 
costs. Instead of the standard Newton-Raphson and regula falsi methods, a new 
improved scheme was used. In this scheme, although only one calculation of the 
function per step was needed, a quadratic convergence for the second and third 
iterations was still guaranteed. 

2. THE PROCEDURE 

We consider the eigenvalues of the one dimensional Schrodinger equation 

a<xdb (1) 

with the homogeneous boundary conditions 

rloV(a) + a,ti(a) = 0, 
(2) 

where qO, (T”, qr, 0, are any given real constants. The interval [a, b] is divided into 
N subintervals by introducing the mesh [4,6] points a = a, < a, < . . < aNp, < 
aN = b and V(x) is replaced by a stepped function V(X) defined as 

V(x) = V,, a, , 6 x 6 a,, i = 1, . . . . N. (3) 

If N is large enough, maxi <, s N lai - a, ,I ,,,.+ r + 0 and V, approximates V(x) at 
a,_l, <x 6 ai for all i, the eigenvalues of 

(4) 

converge to those of Eq. (1). For a finite N, Eq. (4) is an approximation whose 
eigenvalues improve with N. 

At the nth subinterval the solution of (4) is 

where 
$,, = A,,ekn-’ + B,,e knr, 

Using the continuity of +, $’ one gets, 

(5) 

(6) 

(7) 
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where 
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and g’+,=k,+,a,,, e,=k,a,. 
The transfer matrix T is related to the transfer matrix R of [3] by 

(9) 

where 8,=k,a,, g,=k,a,, e,=k,a,, 8,,+,=k,,+,a,, ki=kZ,+,=2m(-E)/h*. 
The use of the boundary conditions (Eq. (2)) leads to 

f‘(E)=Bl(~I,ao+~1~Bo)-~,(~2,~o+~22PO)=01 (10) 

where 

A L= e-‘~“O(q,k,-rr,)=cl,~ AN-epk,vqv(~,kN-o,) r, 

B, eklao(qok, +ao) &,’ B,- ekNui(q,kN+q) =z’ 
(11) 

Equation (10) can be solved for the eigenvalues by a standard Newtonian scheme. 
However, since we may need a relatively large number of constants I/, to achieve 
good accuracy,’ an algorithm that reduces the number of computations off, .f’ 
would be useful. In the next section an improved version of the regula falsi method 
is presented and its efficiency for the model is demonstrated in solving an equation 
with a two-step potential (Sect. 4). 

1 An estimate of the number (N) of subdivisions needed for a given accuracy can be obtained by 
perturbation theory. If the ith interval length is denoted by h, which is assumed to be small, 1st order 
perturbation theory gives for the error in the Ith eigenvalue, 

(v(x) - v,) $: dx. 

This can easily be shown to be O((max, A,)*), 
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3. THE NUMERICAL METHOD 

We denote by s the exact solution of f(x) = 0, i.e., f(s) = 0. It may be calculated 
iteratively by any Newton-type algorithm. Let x0, x,, E be the first approximation, 
the nth iteration and its error (defined as (x,, -s)), respectively, f,, =f(x,,) and 
.I-:, = f’b,). 

The standard Newton-Raphson method given by 

(12) 

guarantees an error relation of the type 

& n+ I = W&i). (13) 

Thus, two computations off, f’ at x,, are necessary for quadratic convergence. 
In the regula falsi scheme, one replacesfi, by a simple finite difference expression 

to get 

(14) 

E ,I + , = O(Ej,’ + V”);‘), (15) 

Thus, following the first two computation off,, fb only one additional calculation 
(off,,) per iteration is needed to obtain convergence of the order of (1 + ,/?)/2 in 
the re ula falsi method. Two consecutive iterations provide an order of 
(( 1 + I- 5)/2)* =2.6> 2. Thus, it is preferable to use this scheme rather than the 
classical Newton-Raphson one (Eqs. ( 12) ( 13)). 

In this work we present an improved method, better than both previous schemes. 
We aimed at replacing f:, in Eq. (12) by a different approximation f:,, based upon 
the already known values off,,, f,, _, , f:, ~ , that would provide a quadratic con- 
vergence for a single function computation. By a procedure similar to that 
explained in Appendix B we choose 

to get 

X 
(x,-xx,,-L)fn 

,z + 1 
=x~~-2(f,-f,-.,)-(x,,-x,,~,)f.:,~,’ 

(17) 

An error analysis of Eq. (17) given in Appendix A indeed shows such a con- 
vergence. 
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We are trying to avoid calculating ,fk (except for ,f; whose computation is a 
necessity) since in general this reduces the number of function evaluations. Hence, 
Eq. (17) can be used just once (for n = 1). However, a quadratic convergence at the 
next step at the price of one evaluation is still possible: we compute ,fz and 
approximate .f; by 

where the choice of tl, /I, y, 6 (obtained in Appendix B) does yield 

Fj = cl($) (19) 

Thus, after performing just four evaluations (off;, f,, .f’, , .fz) one reduces an initial 
error s0 to 0(&t). If convergence is not yet completed, the remaining needed 
iterations may be carried out by the usual parabolic regula falsi scheme or by an 
extension of the scheme given by Eq. (18). 

The parabolic scheme [7] is given by 

L(-5, 2 - -y,,N-y,, I - ~~,,)(~~,, 2 ~-Y,, I) 
x,7+ 1 

=-xft-L -filH-\,l--y,1 2)2-(.Ll- r-.f,,)(.~,, I --u,,12 
(20) 

and provides an error relation 

E,,, I = WE::), (21) 

where c( satisfies 

r3Ly2-@-110 (22) 

giving a z 1.84. The expressions obtained in the extended improved scheme become 
cumbersome, but always guarantee a quadratic convergence. 

4. AN EXAMPLE 

Rewriting Eq. (1) in appropriate units, one gets 

-t,V’+ V$ = E$. (23) 

To check the stepped potential model (SPM) with the improved numerical method, 
we chose V= -X and approximated it by a two step function: 

i 
VI, 

V(x)= v 
O<x<a,, 

2, a, <x< 10. (24) 

The numerical values of V, , V,, and a, were chosen to give the best fit of the exact 
eigenvalues. The latter were obtained by numerically solving Eq. (23) with V= -x 
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TABLE I 

The Calculated Eigenvalues for Several Values of a,, V,, V, and 

the ‘Exact Eigenvalues (Eq. (23) with the Boundary Condition i(O) = $( 10) = 0) 

5 -2.5 -7.5 ~ 1.2 -6.2 ~ 4.6 -2.6 
5 -1.0 -9.0 - 8.7 -7.6 - 5.9 ~ 3.6 - 0.96 
5 -3.5 -6.5 - 6.2 - 5.3 -3.8 
5 -2.5 -8.5 -8.2 -7.2 ~ 5.5 -3.3 
6 -2.1 -8.5 -8.0 -6.5 -4.1 

Exact -1.1 -5.9 -4.5 -3.2 -2.1 -0.9 

(the Airy equation - see, e.g., [S]). Results are presented in Table I. The com- 
parison shows that the best fit occurs for V, = -2.5, V, = -7.5 and a, = 5 as could 
have been expected. 

The comparison between the three different numerical schemes appears in 
Table II for a specific case (a, = 5, V, = 2.5, V, = -7.5). The improvement is self 
evident. 

APPENDIX A 

Let .Y,,+ , , Z,,+ , be defined as 

-y/z + I =..( -.G 
” .fL 

f ,1+ I = .y,, 4 
.7:,’ 

TABLE II“.h.’ 

The Performance of the Three Different Numerical Schemes (~1, = 5, V, = -2.5, Vz = -7.5) 

(Al 1 

Scheme Newton Raphson Regula Falsi Improved R.F. 

Total Number of evaluations 36 21 22 

’ The search for the eigenvalues of the specific example was performed within the interval V, < E < V, 
The starting guess for the lowest value E, was taken as ( V, + 0.05). For all i, once E, was computed, the 
starting guess for E,, , was (E,+0.4). If this guess overshot or led back to E,, it was immediately 
adjusted. 

’ The convergence test was Ix, + , -x,/ < 5 x 10 I”; x,, X, + , being two consecutive approximations to 
any E,. 

’ The total number of computations for all four eigenvalues are given. 
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where f:, is an approximation to fk. Denote the difference fi, - fil by 6. Then 

62+,=%2+, -s=(x”-+)+,+f~ 

which, provided E, is small enough, leads to 

%+I =ow+ .fl, 6 
fxf:, + 6) 

= 0(&i) + O(E,, 6) 

(AZ) 

since f, = O(E,,). 
Thus, a necessary and sufficient condition for 7:, to provide quadratic con- 

vergence is 6 = O(E,,). If we choose 

and replace ,f,, , , f :, , by their Taylor expansions around x,, we get 

7' =f' J,P I -its)* f'"'+ o(E* ) I, II 3 II II I 

(A4) 

or 
6 =.f:, -f:, = w ,) = O(h). (Af-3) 

Hence, provided the (n - 1 )th iteration is of a quadratic nature, the choice (A4) 
guarantees a quadratic convergence for the nth iteration as well. 

APPENDIX B 

Assume that fb2, f, *, L,, f;, are known by previous consecutive com- 
putations and that a,, , = O(E~~_ *), E,, = 0(&i- ,). We define 

(Bl) 

and search for CI, /J, y, 6 that would give the best approximation to f L. This is done 
by expanding f L z, f,, ~ 2, f,, ~ , around x, and choosing ~1, 8, y, 6 that would cancel 
the terms containing f,, fz, f”’ and would also set the coefficient off:, to 1. 

The values obtained are 

xn-I-x, Ct= B=(~“~,-~,)(2~,-,+~,-3~,-z) 
X n-2 -X,-,’ (XnpI -x,p2)2(x,p2-x,,) ’ 

bn-2-xJ2 3x, - 2x,, , - X” 2 
U32) 

y = (X,-I -x,)(x,-, -x,-*)2’ 6=(x,~2-x,,)(x,,-.I-x,). 
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Their substitution in Eq. (B 

3: P afk 

1) leads to 

(B3) 

and therefore to quadratic convergence. 
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